首页 > 行业资讯 > 数位青年学者今日欢聚,聚焦电池未来!

数位青年学者今日欢聚,聚焦电池未来!

时间:2023-11-21 来源: 浏览:

数位青年学者今日欢聚,聚焦电池未来!

能源学人
能源学人

energist

能源学人,打造最具影响力的能源科技服务平台!

收录于合集

以下文章来源于WileyChem ,作者WileyChem

WileyChem .

推送前沿优秀化学研究成果,促进化学研究持续发展。

# 设为星标 走进我们 #

由郑州大学和  Batteries & Supercaps  (欧洲化学学会旗下期刊)联合举办的 Wiley Future Batteries & Supercaps Symposium 将于今日(11月19日)在郑州华智酒店举行。

此次会议于  Batteries & Supercaps 创刊5周年之际,在期刊编委、会议主办方郑州大学周震教授的大力支持下,荣幸邀请到了期刊编委南开大学陈军院士和数位领域内的青年学者与会,旨在促进电池领域的学术交流,共商期刊发展。届时,将会有多位Wiley旗舰刊的编辑到场和广大学者交流。 会议线上同步直播正在进行中,欢 迎广大 学者积极参与!

 会议时间 

2023年11月19日 

 会议地点 

郑州华智酒店 华夏厅

(河南省郑州市中原区科学大道97号)

参与方式

线下参会注册

即刻观看直播

报告人简介及报告摘要

 冯光,华中科技大学 

报告题目:

离子液体超级电容器分子模拟研究

实现“碳达峰、碳中和”目标,研发储能技术必不可少。超级电容器作为一种相对电池充放电更快、循环寿命更长而能量密度较低的电能储存装置,在储能技术领域中正受到越来越多的关注。离子液体因具有工作电压高、工作温度宽、热稳定性好、挥发性极低等优点,已成为一种新型电解液,用于高能量密度超级电容器的研发。深入揭示超级电容器储能过程中电极-离子液体储能界面的微观结构及其动态形成过程,有助于认知其储能机理,以研发出高性能储能器件。近些年来,我们利用分子模拟方法,采用具有不同拓扑结构与表面特征的电极和具有不同分子构型与物化性质的离子液体电解液,研究了超级电容器中的微纳尺度界面与输运现象,分析了储能界面结构及其动态形成过程,并结合实验测量,探索了储能界面的微观结构和离子输运与电容特性之间的内在关联机制,为新型超级电容器的研发提供了新思路、新方案。

向下滑动查看所有内容

 于畅,大连理工大学 

报告题目:

水系高压超级电容器关键组成优化与改进策略

超级电容器因具有较高的功率密度、较宽的工作温度范围以及优异的长循环性能等突出特征在众多领域发挥着传统电容器和电池不可替代的作用。优化高安全性和环境友好的水系超级电容器体系,打破水分子固有的热力学特性限制,提升其能量密度一直是国内外备受关注的一个学科前沿和富有挑战性的热点课题之一。本报告系统分析了水系超级电容器的研究现状,优化了水系超级电容器体系的关键组成,包括碳和水滑石及其派生的电极材料、集流体和超越高盐/粘度“water-in salt”(WIS)的新型低盐/粘度高压水系电解液等。最终,实现了水系超级电容器存储电荷的能力,输出电压窗口和能量密度的有效提升,为高电压、高能量和高倍率水系超级电容器的发展提供可资借鉴新思路和技术支持。

向下滑动查看所有内容

 王凯,中科院电工研究所 

报告题目:

混合型超级电容器及关键材料

超级电容器具有功率密度高、充电时间短、使用寿命长等优点;在启动电源、工业节能、航空航天等诸多领域具有重要应用前景。但是其能量密度密度仅为5-10 Wh/kg,制约了超级电容器的广泛使用。本报告将结合课题组的最新研究进展,深入探讨超级电容器关键材料的研制和器件制备,主要包括:1)电极材料设计与制备; 包括石墨烯基多级次电极材料、氮掺杂电极材料;2)高比能器件的开发。通过对器件结构的调控和大容量器件技术的创新,开发具有优良电化学性能的高能量密度混合型电容器。

向下滑动查看所有内容

 曹余良,武汉大学 

报告题目:

钠离子电池关键电极材料研究

发展大规模储能的二次电池不仅需要具有适宜的电化学性能,更需考虑资源成本和环境效益等应用要求。而锂离子电池用于大规模储能可能受到锂资源的制约,因此,从资源与环境方面考虑,具有与锂离子电池相似电化学性能的钠离子电池体系作为储能电池更具应用优势。然而,从目前的技术现状来看,几类不同的嵌钠正负极材料虽显现出可观的容量与较好的循环性,但能量密度与功率密度尚待提高。过渡金属氧化物、氰基正极材料和磷酸盐体系,以及硬碳负极材料最有希望用于实用化钠离子电池体系,但这类材料的初始充放电效率和循环稳定性仍有待改善。本报告简要分析嵌钠正负极材料的一些问题,讨论适合嵌钠反应的一些思路,并结合本课题组的研究工作讨论钠离子电池正极材料及硬碳负极材料的应用可行性。

向下滑动查看所有内容

 林紫锋,四川大学 

报告题目:

Probing Charge Storage Mechanism of MXene in Aqueous Electrolytes by EQCM

MXenes are two-dimensional metal carbides and/or nitrides that attracted great attention for energy storage applications, especially as capacitive electrodes in aqueous electrolytes. Great efforts have been dedicated to understanding the MXene charge storage mechanisms. Electrochemical quartz crystal microbalance (EQCM) is a powerful tool to screen the gravimetric response of electrodes. This presentation will introduce the application of EQCM in probing the charge storage mechanisms of MXene electrodes in aqueous electrolytes, and more importantly, highlight a new method that is proposed to deconvolute and quantify the real-time fluxes of H2O and proton and ionic currents based on the EQCM measurement results. The flux cyclic voltammograms (CVs) and ionic current CVs are creatively conceptualized and apply to analyze the real-time molecules and ions evolution. It’s believed that the proposed strategy for interpreting the real-time charge storage behavior will ultimately position the EQCM technique as a powerful tool for extensive application in various research fields.

References

1) Kai Zheng, Yongqiu Xian, Zifeng Lin*, A Method for Deconvoluting and Quantifying the Real-time Species Fluxes and Ionic Currents Using in Situ Electrochemical Quartz Crystal Microbalance. Advanced Materials Interface, 2022, 9(16), 2200112

2) Yongqiu Xian, Bin Wang, Zifeng Lin*, Ti3C2Tx MXene with high pseudocapacitive activity and large potential window in a mild AlCl3 aqueous electrolyte, Small Methods, 2023, DOI: 10.1002/smtd.202201526

Fig. 1. A schematic shows the deconvolution of real-time ionic fluxes by in-situ EQCM.

向下滑动查看所有内容

 翁哲,天津大学 

报告题目:

水系锌电池负极界面问题及应对策略

水系锌离子电池因安全性高、资源丰富、成本低廉、环境友好等优点,在大规模储能领域展现出广阔的应用前景。然而,金属锌负极的枝晶生长、析氢和腐蚀问题,严重影响了电池的库伦效率、循环寿命等电化学性能,制约了锌离子电池的产业化进程。本报告将介绍我们在解决锌负极问题上所提出的电极/电解液界面的管理策略,包括电极表面预修饰、动态自适应界面构建、水合有机电解液原位构筑SEI等。

向下滑动查看所有内容

 晁栋梁,复旦大学 

报告题目:

安全高能水系电化学:从基础到应用

高比能(能量密度)蓄电池是新能源汽车、分布式储能等国家战略新兴产业的“心脏”,而高安全性则是任何电池体系实际应用的先决条件。近年来,备受青睐的高比能有机系锂离子电池(LIBs)所带来的安全隐患日益突显。例如,采用LIBs的手机、电动车、储能电站等频发自燃、自爆事故,这些已危及人们的生命财产和人身安全。相比之下,水性电池(ABs)具有天然的高安全性、低成本、快充特性及制造工艺简易等优势,是下一代安全电源及大规模储能器件的重要候选。但是,相比于已广泛应用的有机锂离子电池,当前商用水系电池面临的最大挑战是比能低。要想提升水系电池的能量密度,一是提升电极的比容量,二是拓宽电化学窗口。跳出现有电极体系及方案,该报告将系统介绍其团队通过构建新型高容量/高电压反应电对、电解液溶剂化结构调控、稳定水-金属界面等水系电化学策略,最终为高比能水系电池设计提供系统的器件化解决方案。

向下滑动查看所有内容

 于乐,北京化工大学 

报告题目:

面向高比能电池的表界面工程

The energy crisis and greenhouse effect have aroused enormous research effort for developing effective electrochemical energy storage systems (EESs). Metallic Li/Zn is widely considered as the ultimate anode for the next-generation high-energy-density rechargeable batteries owing to its extremely high theoretical specific capacity and the low reduction potential. Despite these obvious superiorities, the practical application of the Li/Zn metal anode still faces great challenges associated with the repeated plating/stripping cycles. Particularly, inhomogeneous deposition leads to the formation and growth of dendrites, which could puncture the separator and cause internal short circuit. Among the available strategies, utilization of 3D porous/hollow carbonaceous scaffolds as both the Li/Zn host and current collector has been considered as an attractive strategy for dendrite-free Li/Zn metal batteries. Fabricating hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, building block, and interior architecture has shown huge impact on the development of 3D porous/hollow hosts for Li/Zn metal batteries. This report summarizes our recent progress towards complex hollow nanostructure design as functional host for Li/Zn metal anode and take a prospect for its research future.

向下滑动查看所有内容

PhilippAdelhelm 

Humboldt-Universität zu Berlin

报告题目:

Materials development for Na-ion batteries

The rapid growth in battery demand, combined with resource issues and supply risks, raises questions about whether alternative battery technologies are needed that complement or partly replace lithium-ion and lead-acid batteries. A range of alternatives such as high temperature batteries or redox-flow systems are already available, with Na-ion batteries (SIBs or NIBs) being the latest contender.[1],[2]

 

The main goal for SIBs is to develop batteries based on abundant, non-critical elements that reach, at the same time, similar energy densities compared to Li-ion batteries (LIBs). SIBs have the potential to be more cost effective than LIBs while reaching similar cycle life. As a major advantage compared to other alternative cell chemistries, SIBs can be produced on the same manufacturing lines like LIBs therefore taking advantage of existing manufacturing technology. Recent announcements by Chinese cell and car manufacturers are further raising the interest in this technology. In fact, the first Na-ion Gigafactory has opened in November 2022 in China and Chinese OEMs announced to implement SIBs in electric vehicles. This clearly shows that the technology is now reaching commercialization.

On the other hand, there are needs for further improvements in electrode materials and electrolytes to further develop the technology. This talk gives an overview on Na-ion batteries and recent developments. The state-of-the art will be summarized followed by a discussion on what materials can be used (and not used) compared to Li-ion batteries. Specific examples include how nanoscale chemical strategies can be used to tune the properties of layered oxides as cathode materials for SIBs[3], and how the intercalation of solvated ions enables a new “electrode chemistry”.[4],[5] The talk will also include an example of how X-ray tomography can be used to study morphological changes and particle displacement during battery charging/discharging.[6]

[1] Sodium-ion batteries: Materials, Characterization and Technology ISBN: 978-3-527-34709-4, Wiley Dec 2022, Titirici/Adelhelm/Hu (Editors)

[2] P. Nayak et al. Angew. Chemie. Int. Ed., 2018, DOI: 10.1002/anie.201703772

[3] L. Yang et al. Adv. Functional Materials, 2021, DOI: 10.1002/adfm.202102939

[4] G. Ferrero et al. Adv. Energy Materials, 2022, DOI: 10.1002/aenm.202202377

[5] G. Avall et al. Adv. Energy Materials, 2023, DOI: 10.1002/aenm.202301944

[6] Z. Zhang et al. Adv. Energy Materials, 2023, DOI: 10.1002/aenm.202203143

向下滑动查看所有内容

 陈宇辉,南京工业大学 

报告题目:

锂氧电池的挑战和路线探讨

为了实现更高的电池容量和更大的能量密度,对于一些新型电池体系的研究迫在眉睫。锂氧电池因其理论能量密度可以达到锂离子电池的10倍左右而成为研究的热点,但是目前能存在诸多问题亟待解决。目前锂氧电池的相关研究集中于正极,关于锂负极的研究是许多电池体系的共性问题,可以互相借鉴。关于正极的研究聚焦在两个方面,更高效的正极催化剂和更少的副反应。在放电过程中,正极侧会发生氧气还原为过氧化锂(Li2O2)的反应,而充电过程中放电产物过氧化锂被分解为氧气,但是该反应的过电位很大,亟需高效催化剂改善充放电过电位。同时,由于催化反应机理并不明晰,为催化剂的设计带来很大的挑战。另一方面,为了提升锂氧电池的循环性能,需要尽可能减少充放电过程中的副反应,推迟电极表面的钝化。本报告将从这两方面出发,介绍锂氧电池正极反应中的主要挑战与机遇,展望锂氧电未来的可能发展方向。

向下滑动查看所有内容

 主办方 

 关于期刊 

Batteries & Supercaps 是欧洲化学协会(Chemistry Europe)的官方期刊并由Wiley-VCH出版,主要发布电池和超电领域所取得的重要突破。 期刊于2018年创刊,最新影响因子为5.7,JCI指数0.76,SNIP0.798,CiteScore 8.9, 五年影响因子5.6。

END

版权:如无特殊注明,文章转载自网络,侵权请联系cnmhg168#163.com删除!文件均为网友上传,仅供研究和学习使用,务必24小时内删除。
相关推荐