无轴螺旋连续热解装置上的生物质热解特性
- 期刊名字:农业工程学报
- 文件大小:306kb
- 论文作者:王明峰,吴宇健,蒋恩臣,陈晓堃
- 作者单位:华南农业大学材料与能源学院
- 更新时间:2020-06-12
- 下载次数:次
第31卷第15期农业工程学报Vol 31 No 152162015年8月Transactions of the Chinese Society of Agricultural EngineeringAug.2015无轴螺旋连续热解装置上的生物质热解特性王明峰,吴宇健,蒋恩臣,陈晓堃(华南农业大学材料与能源学院,广州510642)摘要:连续热解是一种髙效的生物质能转化技术,无轴螺旋式连续热解装置不仅可减轻送料部件的质量,而且为热解挥发性产物的排岀提供了有效空间,是极具发展前景的连续热解装置。为了解无轴螺旋式生物质连续热解特性,该文在无轴螺旋连续热解装置上,开展了以稻壳、花生壳和木薯茎秆为生物质原料的热解试验,分析了3种生物质在不同热解温度下的三态产物分布特性、热解气体组分变化规律及热解炭的组织结构和表面形貌特征。结果表明:炭产率随热解温度升高逐渐下降,气体产率逐渐上升,液体产率先上升再下降,在450℃时达到最大,产物分布特性与其他热解反应器的一致;不同原料炭产率由高到低依次为:稻壳>花生壳>木薯茎秆,液体产率由高到低依次为:稻壳>花生壳>木薯茎秆,气体产率与液体产率相反。热解气体组分受温度影响较大,热解温度升高,可燃气体组分含量不断上升,不可燃气体组分含量不断下降,不同原料对气体组分含量影响较小。热解炭的工业分析结果与原料的工业分析结果存在相关性热解温度升高,热解炭中挥发分含量逐渐下降,固定碳及灰分含量増加,木薯茎秆炭的挥发分含量最高,花生壳炭的固定碳含量最高,稻壳炭的灰分含量最高;低温热解炭的表面官能团较为丰富,随热解温度升髙官能团种类逐渐减少;原料自身结构特性对热解炭的表面形貌影响较大,随着热解温度升高,生物质原料的表面结枃不断被破坏,热解炭表面岀现孔隙结构,花生壳炭与木薯茎秆炭表面孔隙结构比稻壳炭更为发达。关键词:生物质;热解;秸秆;无軸螺旋连续热解装置;产物分布;热解气组分;热解炭特性doi:10.11975/sn.1002-6819.2015.15.030中图分类号:TK62文献标志码:文章编号:1002-6819(2015)-15-021607王明峰,吴宇健,蒋恩臣,陈晓堃.无轴螺旋连续热解装置上的生物质热解特性[].农业工程学报,2015,31(15)216-222.doi:10,11975/j.issn1002-6819.2015.15.030http://www.tcsae.orgWang Mingfeng, Wu Yujian, Jiang Enchen, Chen Xiaokun. Biomass continuous pyrolysis characteristics on shaftless screwconveying reactor[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2015, 31(15)216-222.(inChinesewithEnglishabstractdoi:10.11975/j.issn.1002-6819.2015.15.030http://www.tcsae.org文献[8]、[9]、[0在螺旋送料式连续热解装置上对玉米秸秆、小麦秸秆和稻壳进行了热解特性研究,中国当前面临着能源枯竭与环境污染的双重危机,开表明,已有连续热解设备能够将生物质原料转化生成发新的洁浄可再生能源受到广泛的关注,其中生物质能作炭、生物油和热解气,在一定范围内随着热解温度的为一种含能体能源,是清洁丰富的可再生能源,而中国升高,炭产率下降,气体产率上升,液体产率先升高农业生产剩余物尚缺乏有效的回收利用途径,开展农业生后降低。连续热解的生物炭产率在34%~42%之间;物质的开发利用研究具有深刻的意义和广阔的前景生物油产率在35%左右,包括焦油和木醋液两部分,热解是生物质能的一种重要利用形式,是指生物质主要组分为酸、醇、酮、酚等有机物;热解气产率在原料在隔绝或者低氧的环境下受热裂解的过程,主要生17%~23%之间,成分主要包括:H2、CO2、CO、CH成固体炭、可冷凝液体油和可燃气体产物23。生物质连及其他CHn等。续热解是一种高效的热解处理方式,受到国内外研究学与现有的螺旋式连续热解装置相比,无轴螺旋式连者的重视,英国利兹大学及国内的华南农业大学、山东续热解装置不仅可减轻送料部件的质量,而且为热解挥省能源研究所、中科院兰州化学物理研究所和浙江大学发性产物的排出提供了有效空间,是极具发展前景的连等科硏单位开展了以螺旋输送器为核心部件的生物质连续热解裝置。目前,针对无轴螺旋式生物质连续热解特续热解装置的研究工作41性的研究较少。本文在自行研制的以无轴螺旋送料器为核心部件的连续热解反应器上,开展了具有代表性的3种生物质稻壳、花生壳和木薯茎秆的热解试验,分析生收稿日期:2015-05-04修订日期:201507-14基金项目:科技部农业科技成果转化资金项目(201462E000壤植物质原料的组分差异和热解温度对三态产物分布、热解物机器系统技术国家重点实验室开放课题(2014SKL-07)气体组分变化规律及热解炭的组织结构和表面形貌的影作者简介:王明峰,男,辽宁鞍山人,讲师,主要从事生物质能利用研究。广响,并与已有探讨装置的适应州华南农业大学材料与能源学院,510642。Emai:wangmingfeng@scau.edu.cn性,为不同生中国煤化工的确定和热解※通信作者:蒋恩臣,男,黑龙江,教授,博士生导师,主要从事生物质能CNMHG利用工程研究。广州华南农业大学材料与能源学院,510642产物利用提供lang e scau. eau. cn第15期王明峰等:无轴螺旋连续热解装置上的生物质热解特性217原料与装置木科作物茎秆,纤维素、木质素含量较为丰富。试验用稻壳、花生壳和木薯茎秆分别购自于广州某稻谷加工厂、江1原料本试验以3种代表性农业生物质稻壳、花生壳和木薯苏一植物肥料中心和广西的木薯生产基地,原料经粉碎后茎秆为原料,其组分分析见表1,其中,稻壳是禾本科在70℃电热恒温干燥箱内烘干24h,统一过40目筛后装袋密封,其工业分析结果见表1,工业分析方法参考国标植物外壳,主要含有纤维素、半纤维素成分;花生壳是豆科草本植物外壳,主要成分为木质素;木薯茎秆是大戟灌GB/I287312012固体生物质燃料工业分析方法。表1原料组分分析与工业分析Table 1 Proportion of three-component and proximate analysis of biomass materials组分分析 Three-componen工业分析 Proximate analysisMaterials纤维素半纤维素木质素水分挥发分灰分固定碳19.0Rice husk花生壳16.9110.1074372733.8717.37木薯茎秆34.3723.816.394.512试验装置VERTEX70型红外光谱仪分析表面官能团、利用荷兰FEI试验用无轴螺旋连续热解装置见图1。热解装置由送公司ⅹL-30-ESEM型扫描电镜观察表面形貌,热解气体料系统、热解反应系统和冷凝收集系统组成,包括调速组分含量利用安捷伦GC6820气相色谱仪进行检测。电机、进料漏斗、无轴螺旋输送器、热解炉体,温控器炭箱、冷凝管等主要部件2结果与讨论2.1无轴螺旋连续热解装置的冷态输送特性23在常温下开展无轴螺旋连续热解装置的冷态输送特性试验研究,控制驱动电机转速,保证物料在热解管内停留时间为8min,试验进行30min后停止,统计管路内残留生物质原料质量,结果见表2。表2冷态试验管内物料残留量1调速器2驱动电动机3联轴器4进料斗5热解反应器6无轴螺旋输 Table2 Residues of materials at normal temperature experiment送器7加热炉8炭箱9.出气口10冷凝管11伴热带12气体回烧原料 Materials残留量 Residues!g13伴热带温控器14炉体支架15炉体温控器16电机支架17.集气阀1. Speed controller 2. Drive motor 3. Coupling joint 4. Feeder 5 Pyrolytic稻壳 Rice huskeactor 6.Shaftless-screw-conveyor 7 Heating furnace 8Biochar box花生壳 Peanut shellGas burming pipe24.813. Heating belt controller 14 Frame of heating furnace 15. Heating furnace木薯茎秆 Cassava stalk注:热解管内原料停留时间为8min,下同图1生物质无轴螺旋连续热解装置Note: Conveying residence time is Smin. The same as belowig. 1 Sketch of biomass continuous pyrolysis reactor热解管内物料输送存在死角,物料在进料口附近区装置工作原理如下:粉末状生物质原料经由进料漏域形成残留,不同原料的物料残留量不同。冷态试验中斗送入热解反应管,由电机带动无轴螺旋输送器将物料木薯茎秆残留量最大,花生壳次之,稻壳残留量最小。推送至热解反应器的高温反应区,物料在推送过程中完稻壳是禾本科纤维植物外壳,粉碎后更多呈现细密条状,成热解,生成的热解炭落入保温炭箱,热解挥发物通过螺旋推送时物料间作用力更大,有利于完全送料。而花炭箱出气口进入冷凝系统,液体产物被冷凝收集,不可生壳、木薯茎秆中木质素成分较高,粉碎后更多呈现较冷凝气体引至炭箱底部点燃,保证炭箱温度大于200℃,小的细片状或颗粒状,物料间作用力作用小,易滞留在防止热解挥发物在炭箱内冷凝。底,导致残留量增大。1.3试验方法2.2连续热解三态产率分析连续热解试验反应温度梯度为350、450、550、650℃稻壳、花生壳和木薯茎秆连续热解三态产率及管内热解反应时间8min,炭箱升温至200℃保温,采用4组残留量见表3,其中炭产率、液体产率和管内残留率通过冷凝管对热解挥发物进行冷却,冷却水温度为25℃,试称量法获得,气体产率通过差减法求得。热解条件下,验中采用集气袋收集部分不可冷凝气体用于检测。试验管内物料残留量大小顺序与冷态试验相同,但热解生成结束后,统计热解炭、液产物及管路残留物料的质量的焦油气回渗H中国煤化工钻附在无轴螺旋原料及热解炭表征方法:利用长沙友欣 YX-GYFX701上,导致热解CNMHG产物分布结果型全自动工业分析仪进行工业分析、利用布鲁克表明,热解温度,原科十拌久万的析出量增大,218农业工程学报(htp:/www.tcsae.org)2015年固体产物质量减小,导致炭产率不断下降14。不同原料不同原料对气液两相产率影响较大。液体产率由高连续热解炭产率存在一定差别,稻壳与花生壳炭产率较到低依次为:稻壳>花生壳>木薯茎秆,气体产率与液为接近,木薯茎秆最低。稻壳中灰分与固定碳含量之和体产率相反。这2部分产物主要由原料水分及挥发分生最大,达25.04%,热解后主要存留于固体产物中,对炭成,其中挥发分起主导作用,由原料工业分析数据可见,产率贡献较大,炭产率最高;花生壳两者含量之和为3种原料中,木薯茎秆热解生成的挥发性产物较多,且更21.24%,炭产率次之;而木薯茎秆两者含量之和仅为容易发生二次裂解,利于生成气体产物:稻壳热解生成15.59%,且挥发分含量最高,对挥发性物质产率贡献较的挥发性产物较少且不利于二次裂解反应,因而更多地大,导致其炭产率最低。生成液体产物;花生壳则介于两者之间表3原料连续热解三态产率及管内物料残留量生物质热解产物分布特性很大程度上是由热解条件Table 3 Charcoal, liquid and gas yield of continuous pyrolys(主要是热解温度)和原料的性质造成的018。尽管生物materials and residues in tube质原料特性和反应温度有一定的区别,但是热解产物得Materials Temperature/ Yield of液体产率气体产率原料温度charcoal/ Yield of Yield of残留量率的变化规律基本一致。文献[〕9]和[20在固定床热解反iquid/% fuelgas/%R应器上的研究表明,随温度的升高,可燃气和液相冷凝27.3311.0物的产率增大,而热解炭产率减小。生物质在无轴螺旋28.59连续热解装置上的热解产物分布特性与其他热解反应器Rice husk55031.372565028.26l1.62.3连续热解气体产物特性29.05花生壳33.4833.0429.23生物质连续热解气体组分含量见图2。生物质原料中CPeanut55039.63元素比例最大,热解生成的气体主要由CO2和CO组成2,65026.720.2此外还含有可燃气体H2、CH4、C2H4等。热解气体组分350木薯茎秆受温度影响较大,随着热解温度升高,CO2含量下降,15036.72Cassava55022.14270944.25296550℃连续热解CO2相对含量约为35%,650℃连续热解时则都低于30%;H2含量明显上升且增幅显著,与CO2存在竞争关系,650℃热解时H2相对含量达20%~25%气液两相产率呈竞争趋势。热解温度升高,液体产率文献[2进行的玉米秸秆与稻壳热解试验同样表明:当温先升后降,在450℃时达到最大,此时,稻壳、花生壳和度从400℃增加到600℃,H2相对含量显著升高,从4%木薯茎秆的液体产率分别为3524%、3304%和31.94%;升到28%,与本文研究结果相近;CO含量略微下降,总气体产率则相反,先略微下降再上升,在450℃时最小。体上保持稳定数值:CH4含量先升高后稳定,350℃低温450℃的热解温度为气液产物竞争的分水岭。硏究表明,热解产生甲烷较少,450℃后保持相近数值,占15c热解温度髙于450℃时,会加剧液体产物二次裂解,生成20%;C2H4含量逐渐升高,但含量较低。因此,随着热气体产物,导致液体产率下降。因此,欲获得液体产物,解温度升高,热解气体产物中可燃气体组分含量不断升热解反应温度应控制在450℃附近:欲获得气体产物,应髙,不可燃气体组分含量不断下降,高温连续热解不仅进一步提高热解温度,增加液体产物的二次裂解15有利于气体产物生成,而且能够提高气体品质232热解温度 Pyrolysis temperature℃b Peanut shellc Cassava stalk图2生物质连续热解气体组分含量Fig 2 Gas不同热解温度下,3种原料的热解气组分变化趋势基约占25%,可燃气体相对含量达到75%。本一致,热解原料对气体组分含量影响不大,在试验热2.4连续热解怗性解温度范围内,同一热解温度下不同原料各热解气组分2.4.1连续热中国煤化工含量差别小于5%,相差不大,在650℃下3种原料的热连续热解CNMHG卩固定碳含量最解气中H2约占25%、CO约占30%、CH4约占20%、CO2高,是热解炭的主要结构成分。随着热解温度升高,热第15期王明峰等:无轴螺旋连续热解装置上的生物质热解特性219解程度加深,生物质中挥发分不断分解析岀,获得的热冋原料热解炭的官能团丰富度存在一定差异,花生壳炭解炭的产率不断减小;而灰分及固定碳大部分存留于热的表面官能团较丰富,稻壳炭表面官能团较少解炭中,其占总体比例逐渐增大,导致热解炭中挥发分百分含量逐渐下降,灰分及固定碳百分含量上升650℃550℃表4生物质热解炭工业分析Table 4 Proximate analysis of bio-charcoal from continuouspyrolysissr A挥发灰分函兰Materials Temperature/ volatile/% Ash/% Fixed carbon/%4000350030002500200015001000500波长 Wave length/cm315748,09Rice huskcharcoal49.22a Rice husk biochar5028550℃花生壳炭charcoal11.3267.166509.0174.24sF等13.23木薯茎秆炭Cassava stalk40003500300025002000150010005005767波长 Wave length/en55.33b.花生壳b. Peanut shell biochar不同生物质热解炭的工业分析存在差异,并与原料的工业分析结果相关。3种热解炭的固定碳含量由高到低650℃依次为:花生壳炭>木薯茎秆炭>稻壳炭,挥发分含量由550℃高到低依次为:木薯茎秆炭>花生炭壳>稻壳炭,灰分含450℃量由高到低依次为:稻壳炭>木薯茎秆炭>花生壳炭。稻壳炭中固定碳含量低于木薯茎秆炭,主要是由于稻壳炭x5图的灰分含量较高,占总体比例过大,导致其固定碳含量下降。40350380250200=150千05波长 Wave length/em2.4.2连续热解炭表面官能团特性450、550、650℃热解温度下获得的3种原料热解炭c.木薯茎秆炭Cassava stalk biochar的红外光谱(FT-IR)检测结果见图3图3生物质热解炭红外图谱450℃热解炭中,3392cm处的吸收峰主要是分子Fig 3 FT-IR spectra of bio-charcoal之间氢键缔合的醇、酚的—OH伸缩振动,表明存在酚羟基或醇羟基结构:2958、2921cm4处的吸收峰主要2.4.3连续热解炭表面形貌特性是烷烃中的C-H的伸缩振动;550、650℃热解炭在此3种原料及其350、450、550、650℃热解炭的扫描3个波数下的吸收峰消失。表明,随着热解温度升高电镜(SEM)表征结果如图4,放大倍数为1600倍。热解炭中的-OH基团和-CH2基团随挥发物的析出而由SEM图像可见,生物质原料表面结构较为平消失,生成CH4、C2H4、C2H6等气态烃12。1415~经热解后,表面结构被破坏,部分区域塌陷形成694cm1为_C=C和C=O振动峰,表明生物质炭表面了凹凸不平的表面形态,随着热解温度继续升高,含有羧基、羰基等酸性含氧官能团,此处峰面积减小,生了明显的孔隙结构。生物质原料高温热解后,其中该类官能团不断减少。1095cm处吸收峰是酚、醚的有机质被逐渐分解,残余的细胞结构形成了炭的孔醇的_C=O伸缩振动及—C=C伸缩和_OH面外弯曲歐结构,温度越高,表面结构变化越明显,大孔开始振动吸收峰,874、794cm1为芳香族化合物CH变膨胀,并发育出更多的微孔结构1。不同原料热解炭形振动吸收峰,此处峰面积逐渐增大,表明随热解温度的表面形貌差异较大,花生壳炭与木薯茎秆炭表面孔升高,热解炭缩合度上升,结构高度芳香化,逐渐形成隙结构比稻壳炭更为发达,主要是由原料自身结构特芳香化炭结构1281性造成的:花生壳本身具有起伏的表面结构,木薯茎低温热解生物质炭中各类官能团较为丰富,随热解秆内部为蓬松V凵中国煤化工性更有利于热温度升高,高波段的红外吸收峰消失,官能团种类逐渐解炭孔隙生成CNMHG发达,不利减少,芳香化炭结构逐渐增多。在相同热解温度下,不热解生成孔隙结构220农业工程学报(htp:/www.tcsae.org)2015年20mTO um650℃稻壳炭b.650℃花生壳炭650℃木薯茎秆炭d.350℃稻壳炭350℃花生壳炭a 650C Rice husk charcoal b 650C Peanut shell charcoal c 650C Cassava stalk charcoal d. 350C Rice husk charcoal e 350C Peanut shell charcoal20mf.350℃木薯茎秆g.稻壳原料h.花生壳原料i木薯茎秆原料f 350C Cassava stalk charcoalg Rice huskh. Peanut shelli Cassava stalk图4生物质原料及不同温度热解炭SEM图(1600×)ig. 4 SEM images of bio-materials and charcoal in different pyrolytic temperature(1600X)结论trends of biomass pyrolysis technology[]. Industrial Boiler,2011(2): 10-14. (in Chinese with English abstract)1)随着连续热解温度升高,炭产率逐渐下降,液体阝3] Demirbas A. Biomass resource facilities and产率先升后降,在450℃时达到最大,稻壳、花生壳和木conversion processing for fuels and chemicals[J]薯茎秆的液体产率分别为35.24%、33.04%和31.94%,气Conversion Management, 2001, 42(11): 1357-1378体产率与液体产率呈竟争关系。生物质在无轴螺旋连续4 I Chidi e efika, Chunfei wu, Paul t williams. Syngas解装置上的热解产物分布特性与其他热解反应器的production from pyrolysis-catalytic steam reforming of waste致。热解气体主要由CO2和可燃气体CO、H2、CH4、C2Hbiomass in a continuous screw kiln reactor[J]. Journal of组成,随着热解温度升高,可燃气体组分含量上升,不Analytical and Applied Pyrolysis, 2012, 95(5): 87-94可燃气体组分含量下降,650℃连续热解可燃气体相对含5]蒋恩臣,苏旭林,王明峰,等.生物质连续热解反应裝置量达75‰。热解气体组份含量受温度影响较大,受原料的变螺距螺旋输送器设计[.农业机械学报,2013,44(2)影响不大。121—1242)热解炭工业分析结果表明,随着热解温度升高,Jiang Enchen, Su Xulin, Wang Mingfeng, et al. Design of挥发分含量逐渐下降,灰分及固定碳含量上升。不同原variable pitch spiral conveyor for biomass continuous料的热解炭工业分析存在差异,且与原料的工业分析结pyrolysis reactor[J]. Transactions of the Chinese Society for果存在相关性Agricultural Machinery, 2013, 44(2): 121-124. (in Chinese3)热解炭红外光谱分析结果表明:随着热解温度升with English abstract)高,热解炭逐渐形成竻香结构,缩合度上升,官能团种6]王天岗,孙立,张晓东,等.生物质热解释氢的实验硏究J类逐渐减少。同一热解温度,不同原料热解炭的官能团山东理工大学学报:自然科2006,20(5):41-43丰富度存在差异,花生壳炭的表面官能团较丰富,稻壳Wang Tiangang, Sun Li, Zhang Xiaodong, et al. The study of炭表面官能团较少。the behavior of hydrogen released from biomass pyrolysis[J]4)扫描电镜结果表明,原料经热解后,表面结构被Journal of Shandong University of Technology: Sci Tech破坏,部分区域塌陷形成了凹凸不平的表面形态,随着2006, 20(5): 41-43. (in Chinese with English abstract)热解温度的继续升高,产生了明显的孔隙结构。原料自(]马隆龙,颜涌捷,孔晓英,等.稻壳和木粉在内循环流化身结构特性对热解炭的表面形貌影响较大,花生壳炭与床气化炉中气化实验研究J.农业工程学报,2006,22(增木薯茎秆炭表面孔隙结构比稻壳炭更为发达。刊1):151-154参考文献]la Longlong, Y an Yongjie, Kong Xiaoying, et al. Study orasification experiment of wood powder and rice husk in[1] Caputo A C, Palumbo M, Pelagagge P M, et al. Economics ofeternally circulating fluidized bed gasifier[J]. Transactionsbiomass energy utilization in combustion and gasificationof the Chinese Society of Agriculture Engineeringplants: Effects of logistic variables[J]. Biomass andTransactions of the CSAE), 2006, 22(Supp 1): 151-154.(irBioenergy,2005,28(1):35-51.2]蔡晓峰,张涛.生物质热解技术的现状、发展趋势及研究8]施建军,工业锅炉,2011(2):10-1TH中国煤化工专化工艺与装置实验研究JCNMHGCai Xiaofeng, Zhang Tao. Current status and developmentShi Jianjun, Bao Weitao. Experimental第15期王明峰等:无轴螺旋连续热解装置上的生物质热解特性221pyrolysis set for energization[J]. Anhui Chemical Industry, [17 Sohi s, Loez-Capel E, Krull E, et al. Biochar's roles in soil2008, 34(5): 25-28. (in Chinese with English abstract)and climate change: A review of research needs[R]. CSIRO9]王明峰,蒋恩臣,李柏松,等.稻壳连续热解特性研究凹Land and Water Science Report, 2009太阳能学报,2012,33(1):168-172[18 OLaughlin J, McElligott K. Biochar for Environ-mentalWang Mingfeng, Jiang Enchen, Li Bosong, et al. Study onmanagement: science and technology J]. Forest Policy andcontinuous pyrolysis of rice husk[J]. Acta Energiae SolarisEconomics,2009,11(7):535-536sica.2012.3x1):168-172.( (in Chinese with English19曹青,鲍卫仁,昌永康,等、玉米芯热解及过程分析U燃abstract)料化学学报,2004,32(5):557-5621]袁艳文,田宜水,赵立欣,等.卧式连续生物炭炭化设备Cao Qing, Bao Weiren, Li Yongkang, et al. Pyrolysis and研制.农业工程学报,2014,30(13):203-210reaction mechanism analysis of corncob[J] Journal of FuelYuan Yanwen, Tian Yishui, Zhao Lixin, et al. Design andChemistry and Technology, 2004, 32(5): 557-562.(inmanufacture of horizontal continuous biomass carbonizationChinese with English abstract)equipment[J. Transactions of the Chinese Society of20夏祖章,张百良,余泳昌,等,农业生物质裂解试验研究UAgriculture Engineering (Transactions of the CSAE), 2014农业工程学报,1995,11(3):31-3730(13): 203-210 (in Chinese with English abstract)Xia Zuzhang, Zhang Bailiang, Yu Yongchang, et al[l]l熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木Experiment study on the pyrolysis of agricultural Biomass[JI质素的测定J.粮食与饲料工业,2005(8):40-41.Transactions of the Chinese Society of AgricultureEngineering (Transactions of the CSAe), 1995, 11(3): 31cellulose, hemi-cellulose and ligin in rice hull[J]. Cereal feed37. ( in Chinese with English abstract)Industry, 2005(8): 40-41. (in Chinese with English abstract)[21 Muller-Hagedorn M, Bockhorn H. Pyrolytic behaviour of12]范鹏程,田静,黃静美,等.花生壳中纤维素和木质素含different biomasses(angiosperms)(maize plants, straws and量的测定方法J.重庆科技学院学报:自然科学版,2008wood)in low temperature pyrolysis[]. Journal of Analyticaland Applied Pyrolysis, 2007, 79(1): 136-14010(5):64-65,67[22]闫桂焕,孙立,孙奉仲,等.玉米秸和稻壳热解产物的分Fan Pengcheng, Tian Jing, Huang Jingmei, et al. On布规律J.燃烧科学与技术,2010,16(4):358-362determination of cellulose and lignin of peanut shells[J]Journal of Chongqing University of Science and TechnologyYan Guihuan, Sun Li, Sun Fengzhong et al, DistributionNatural Science, 2008, 10(5 ): 64-65, 67, (in Chinese withproperties of pyrolysis products of corn stalks and ricehusks[J]. Journal of Combustion Science and Technology,English abstract)[13] Han L P, Steinberger Y, Zhao Y L, et al. Accumulation and2010, 16(4): 358--362 (in Chinese with English abstract)partitioning of nitrogen, phosphorus and potassium in[23]马林转,何屏,王华,等.生物质热裂解实验研究.云different varieties of sweet sorghum[J]. Field Crops Research南化工,2004,31(2):9-112011,120(2):230-240la Linzhuan, He Ping, Wang Hua, et al. Experiment study[14]杨海平.油棕废弃物热解的实验及机理研究Φ.武汉:华on pyrolysis of biomass[J]. Yunnan Chemical Technology中科技大学,20052004, 31(2):9-11. (in Chinese with English abstractYang haiping. The experiment and mechanism Study on24吕鹏梅,熊祖鸿,王铁军,等,生物质流化床气化制取富Palm Oil Wastes Pyrolysis[D]. Wuhan: Wuhan Huazhong氢燃气的研究[J.太阳能学报,203,24(6):758-764University of Science and Technology, 2005. (in ChineseLu Pengmei, Xiong Zuhong, Wang Tiejun, et al. Biomasswith english abstract)gasification in a fluidized bed to produce hydrogen rich15]廖艳芬,王树荣,骆仲泱,等.纤维素快速热裂解试验gas[J]. Acta Energiae Solaris Sinica, 2003, 24(6): 758-764研究及分析[.浙江大学学报:工学版,2003,37(5):(in Chinese with English abstract)25]吕鹏梅,熊祖鸿,常杰,等.生物质催化气化制取富氢Liao Yanfen, Wang Shurong, Luo Zhongyang, et al燃气的研究[.环境污染治理技术与设备,2003,4(11):Research on cellulose rapid pyrolysis[J] Journal of ZhejiangUniversity: Engineering Science, 2003, 37(5): 582-601(inLu Pengmei, Xiong Zuhong, Chang Jie, et al. Potential ofChinese with English abstrachydrogen production from biomass catalytic gasification[JI[16]许燕萍,谢祖彬,朱建国,等.制炭温度对玉米和小麦生Techniques and Equipment for Environmental Pollution物质炭理化性质的影响J.土壤,2013,45(1):73-78Control, 2003, 4(11): 31-34.(in Chinese with EnglishXu Yanping, Xie Zubin, Zhu Jianguo, et al. Effects ofmh. YH中国煤化工pyrolysis temperature on physical and chemical properties of[26]郭平,王下生物质废弃物corn biochar and wheat biochar[J]. Soils, 2013, 45(1): 73-N,休大学学报:理学78.(in Chinese with English abstract)版,2014,52(4):855-860222农业工程学报(htp:/www.tcsae.org)2015年Guo Ping, Wang guanzhu, Xu Meng, et al. Structure andbagasses-based biochar[J]. Chinese Journal of Tropicalcomposition characteristics of biochars derived from biomassCrops, 2014, 35(3):595-602(in Chinese with Englishwastes at different pyrolysis temperatures[J]. Journal of JilinabstractUniversity:" Science edition,2014.52(4):855-860.(in[28]李飞跃,谢越,石磊,等.稻壳生物质炭对水中氨氮的吸Chinese with English abstract)附[.环境工程学报,2015,9(3):1221-1226.27]俞花美,陈淼,邓惠,等.蔗渣基生物质炭的制备、表征Li Feiyue, Xie Yue, Shi Lei, et al. Adsorption of ammoni及吸附性能[J.热带作物学报,2014,35(3):595-602itrogen in wastewater using rice husk derived biochar[JIYu Huamei, Chen Miao, Deng Hui, et al. PreparationChinese Journal of Environmental Engineering, 2015, 9(3)characterization and adsorption performance of1221-1226. (in Chinese with English abstractBilomass continuous pyrolysis characteristics on shaftlessscrew conveying reactorWang Mingfeng, Wu Yujian, Jiang Enchen, Chen XiaokunCollege of Materials and Energy, South China Agricultural University, Guangzhou 510642, China)Abstract: Technology of continuous pyrolysis is an effective method of disposing biomass, and the shaftless-screw-conveyingpyrolysis reactor, which is a kind of device with great development prospects, can not only reduce the weight of the conveyinmechanical components, but also provide effective space for the removal of volatile products. At present, there were fewresearches on the biomass continuous pyrolysis characteristics with the shaftless screw conveying reactor. So, the continuouspyrolysis of rice husk, peanut shell and cassava stalk was investigated on the shaftless-screw-conveying reactor, and theproduct distribution, the pyrolysis gas components and the pyrolytic charcoal characteristics of the 3 biomasses at differentpyrolysis temperatures were analyzed. The pyrolysis characteristics were compared with the existing pyrolysis technology, andthe material adaptability of the reactor was discussed. This paper provided a theoretical basis for the determination of theprocess parameters of biomass continuous pyrolysis and the utilization of pyrolysis products of different biomass materialsThe results showed that the distribution of pyrolysis products was consistent with other pyrolysis reactors. With the increase ofpyrolysis temperature, the charcoal yield decreased gradually, the gas yield increased, and the liquid yield increased firstly andthen decreased, which reached the maximum at 450C. The maximum liquid yield of rice husk, peanut shell and cassava stalkwas 35.249%0, 33.04%0 and 31.94% respectively. The gas yield and liquid yield presented a competitive relationship. Fordifferent bio-materials, the order of the charcoal yield from high to low was: rice husk> peanut shell cassava stalk, the liquidield from high to low was: rice husk> peanut shell> cassava stalk, and there were contrary rules between the gas yield andthe liquid yield. The pyrolysis gas was mainly composed of CO2, CH4, H2, C2H4 and CO and the gas component content wasinfluenced by temperature greatly. With the increase of reacting temperature, the content of the combustible gas rose, andnon-combustible gas components declined. The relative content of combustible gas in pyrolysis gas reached 75% at reactiontemperature 650C. Different bio-materials had little effect on the composition and content of the gas. The industrial analysisresults of the pyrolysis carbon were related to that of the raw materials. with the pyrolysis temperature increasing, the volatilecontent of the pyrolysis charcoal decreased gradually, and the ash and the fixed charcoal content increased. There werdifferences of the functional groups among different kinds of charcoals, the surface functional groups of peanut shell charcoalwas more abundant than that of rice husk charcoal In the 3 kinds of charcoals, the highest contents of volatile ash and fixedcarbon were obtained from cassava stalk charcoal, rice husk charcoal and peanut shell charcoal respectively. The structurecharacteristics of raw material had a greater influence on the surface morphology of carbon. The surface functional groups oflow-temperature-pyrolysis charcoal were very rich, the type of the surface functional groups reduced gradually with thepyrolysis temperature increasing. The surface structure of biomass materials continued to be destroyed, and pore structureappeared when the pyrolysis temperature increased. The structure characteristics of raw material had a significant influence onthe surface morphology of carbon, and the surface pore structure of peanut shell charcoal and cassava stalk charcoal was morethan rice husk charcoalKey words: biomass; pyrolysis; straw; shaftless screw conveying reactor;characteristics of pyrolytic charcoalPHs中国煤化工8 Ls compCNMHG
-
C4烯烃制丙烯催化剂 2020-06-12
-
煤基聚乙醇酸技术进展 2020-06-12
-
生物质能的应用工程 2020-06-12
-
我国甲醇工业现状 2020-06-12
-
JB/T 11699-2013 高处作业吊篮安装、拆卸、使用技术规程 2020-06-12
-
石油化工设备腐蚀与防护参考书十本免费下载,绝版珍藏 2020-06-12
-
四喷嘴水煤浆气化炉工业应用情况简介 2020-06-12
-
Lurgi和ICI低压甲醇合成工艺比较 2020-06-12
-
甲醇制芳烃研究进展 2020-06-12
-
精甲醇及MTO级甲醇精馏工艺技术进展 2020-06-12